A Local Meshless Method for Approximating 3D Wind Fields
نویسندگان
چکیده
منابع مشابه
A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملA Meshless-based Local Reanalysis Method for Structural Analysis
This study presents a meshless-based local reanalysis (MLR) method. The purpose of this study is to extend reanalysis methods to the Kriging interpolation meshless method due to its high efficiency. In this study, two reanalysis methods: combined approximations CA) and indirect factorization updating (IFU) methods are utilized. Considering the computational cost of meshless methods, the reanaly...
متن کاملanalyze of 3d elasto-static problems by meshless local petrov-galerkin method
a truly meshless local petrov-galerkin (mlpg) method is developed for solving 3d elasto-static problems. using the general mlpg concept, this method is derived through the local weak forms of the equilibrium equations, by using test functions, namely, the heaviside function. the moving least squares (mls) are chosen to construct the shape functions, for the mlpg method. the penalty approximatio...
متن کاملA Meshless Method for Numerical Solution of Fractional Differential Equations
In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Meteorology and Climatology
سال: 2016
ISSN: 1558-8424,1558-8432
DOI: 10.1175/jamc-d-15-0246.1